The Filchner Ice Shelf Project
E. Darelius, S. Østerhus, I. Fer, K. Daae
and colleagues from
British Antarctic Survey, Alfred Wegener Institute, LOCEAN

1. Cold outflow, bottom water formation
2. Warm inflow, ice shelf melt
3. Sub-ice shelf processes and circulation

Weddell, Aisses, ObsFRIS, WARM...

Pritchard et al, 2012
1. Cold outflow – bottom water formation

- Filchner overflow: $1.6 \times 10^6 \text{ m}^3\text{s}^{-1}$ Ice Shelf Water contributing to the formation of Antarctic Bottom Water
- Long-term monitoring of the Filchner overflow by one (or more) moorings on the Filchner sill
- Plume dynamics
2. Warm inflow

- Climate model suggests dramatic increase in basal melt due to flooding of warm water
- Quantify and understand the flow of warm water across the shelf break towards the Filchner Ice shelf
- Mooring arrays, numerical modelling (realistic and idealized), laboratory experiments
3. Sub ice shelf processes and circulation

- Ice shelf cavities are very difficult to access and observe – they are LARGE and covered by hundreds of meters of ice.
- BAS and AWI are making a huge effort to instrument the Filchner ice shelf cavity: oceanographic moorings and measurements through warm water drilled access holes.
- Bergen is contributing with two mooring system.